Ramin
  • Ramin
  • 53.78% (معمولی)
  • بال ایرانسیم شروع کننده موضوع
11 سال پیش
UserPostedImage


The Space Between: This artist's concept shows the Voyager 1 spacecraft entering the space between stars. Interstellar space is dominated by plasma, ionized gas (illustrated here as brownish haze), that was thrown off by giant stars millions of years ago


NASA Spacecraft Embarks on Historic Journey into Interstellar Space

NASA's Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun

New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas, present in the space between stars. Voyager is in a transitional region immediately outside the solar bubble, where some effects from our sun are still evident. A report on the analysis of this new data, an effort led by Don Gurnett and the plasma wave science team at the University of Iowa, Iowa City, is published in Thursday's edition of the journal Science

"Now that we have new, key data, we believe this is mankind's historic leap into interstellar space," said Ed Stone, Voyager project scientist based at the California Institute of Technology, Pasadena. "The Voyager team needed time to analyze those observations and make sense of them. But we can now answer the question we've all been asking -- 'Are we there yet?' Yes, we are

Voyager 1 first detected the increased pressure of interstellar space on the heliosphere, the bubble of charged particles surrounding the sun that reaches far beyond the outer planets, in 2004. Scientists then ramped up their search for evidence of the spacecraft's interstellar arrival, knowing the data analysis and interpretation could take months or years

Voyager 1 does not have a working plasma sensor, so scientists needed a different way to measure the spacecraft's plasma environment to make a definitive determination of its location. A coronal mass ejection, or a massive burst of solar wind and magnetic fields, that erupted from the sun in March 2012 provided scientists the data they needed. When this unexpected gift from the sun eventually arrived at Voyager 1's location 13 months later, in April 2013, the plasma around the spacecraft began to vibrate like a violin string. On April 9, Voyager 1's plasma wave instrument detected the movement. The pitch of the oscillations helped scientists determine the density of the plasma. The particular oscillations meant the spacecraft was bathed in plasma more than 40 times denser than what they had encountered in the outer layer of the heliosphere. Density of this sort is to be expected in interstellar space

The plasma wave science team reviewed its data and found an earlier, fainter set of oscillations in October and November 2012. Through extrapolation of measured plasma densities from both events, the team determined Voyager 1 first entered interstellar space in August 2012

"We literally jumped out of our seats when we saw these oscillations in our data -- they showed us the spacecraft was in an entirely new region, comparable to what was expected in interstellar space, and totally different than in the solar bubble," Gurnett said. "Clearly we had passed through the heliopause, which is the long-hypothesized boundary between the solar plasma and the interstellar plasma

The new plasma data suggested a timeframe consistent with abrupt, durable changes in the density of energetic particles that were first detected on Aug. 25, 2012. The Voyager team generally accepts this date as the date of interstellar arrival. The charged particle and plasma changes were what would have been expected during a crossing of the heliopause

"The team’s hard work to build durable spacecraft and carefully manage the Voyager spacecraft's limited resources paid off in another first for NASA and humanity," said Suzanne Dodd, Voyager project manager, based at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. "We expect the fields and particles science instruments on Voyager will continue to send back data through at least 2020. We can't wait to see what the Voyager instruments show us next about deep space

Voyager 1 and its twin, Voyager 2, were launched 16 days apart in 1977. Both spacecraft flew by Jupiter and Saturn. Voyager 2 also flew by Uranus and Neptune. Voyager 2, launched before Voyager 1, is the longest continuously operated spacecraft. It is about 9.5 billion miles (15 billion kilometers) away from our sun

Voyager mission controllers still talk to or receive data from Voyager 1 and Voyager 2 every day, though the emitted signals are currently very dim, at about 23 watts -- the power of a refrigerator light bulb. By the time the signals get to Earth, they are a fraction of a billion-billionth of a watt. Data from Voyager 1's instruments are transmitted to Earth typically at 160 bits per second, and captured by 34- and 70-meter NASA Deep Space Network (DSN) stations. Traveling at the speed of light, a signal from Voyager 1 takes about 17 hours to travel to Earth. After the data are transmitted to JPL and processed by the science teams, Voyager data are made publicly available

“Voyager has boldly gone where no probe has gone before, marking one of the most significant technological achievements in the annals of the history of science, and adding a new chapter in human scientific dreams and endeavors,” said John Grunsfeld, NASA’s associate administrator for science in Washington. “Perhaps some future deep space explorers will catch up with Voyager, our first interstellar envoy, and reflect on how this intrepid spacecraft helped enable their journey

Scientists do not know when Voyager 1 will reach the undisturbed part of interstellar space where there is no influence from our sun. They also are not certain when Voyager 2 is expected to cross into interstellar space, but they believe it is not very far behind

JPL built and operates the twin Voyager spacecraft. The Voyagers Interstellar Mission is a part of NASA's Heliophysics System Observatory, sponsored by the Heliophysics Division of NASA's Science Mission Directorate in Washington. NASA's DSN, managed by JPL, is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. The network also supports selected Earth-orbiting missions

The cost of the Voyager 1 and Voyager 2 missions -- including launch, mission operations and the spacecraft’s nuclear batteries, which were provided by the Department of Energy -- is about $988 million through September

For a sound file of the oscillations detected by Voyager in interstellar space, animations and other information, visit

http://www.nasa.gov/voyager 

For an image of the radio signal from Voyager 1 on Feb. 21 by the National Radio Astronomy Observatory's Very Long Baseline Array, which links telescopes from Hawaii to St. Croix, visit

http://www.nrao.edu 

-end-


NASA news



Ramin
  • Ramin
  • 53.78% (معمولی)
  • بال ایرانسیم شروع کننده موضوع
11 سال پیش
?How Do We Know When Voyager Reaches Interstellar Space


UserPostedImage

You Are Here, Voyager: This artist's concept puts huge solar system distances in perspective. The scale bar is measured in astronomical units (AU), with each set distance beyond 1 AU representing 10 times the previous distance. Each AU is equal to the distance from the sun to the Earth. It took from 1977 to 2013 for Voyager 1 to reach the edge of interstellar space
Image Credit
NASA/JPL-Caltech




Whether and when NASA's Voyager 1 spacecraft, humankind's most distant object, broke through to interstellar space, the space between stars, has been a thorny issue. For the last year, claims have surfaced every few months that Voyager 1 has "left our solar system." Why has the Voyager team held off from saying the craft reached interstellar space until now

"We have been cautious because we're dealing with one of the most important milestones in the history of exploration,” said Voyager Project Scientist Ed Stone of the California Institute of Technology in Pasadena. “Only now do we have the data -- and the analysis -- we needed

Basically, the team needed more data on plasma, which is ionized gas, the densest and slowest moving of charged particles in space. (The glow of neon in a storefront sign is an example of plasma.) Plasma is the most important marker that distinguishes whether Voyager 1 is inside the solar bubble, known as the heliosphere, which is inflated by plasma that streams outward from our sun, or in interstellar space and surrounded by material ejected by the explosion of nearby giant stars millions of years ago. Adding to the challenge: they didn't know how they'd be able to detect it

"We looked for the signs predicted by the models that use the best available data, but until now we had no measurements of the plasma from Voyager 1," said Stone

Scientific debates can take years, even decades to settle, especially when more data are needed. It took decades, for instance, for scientists to understand the idea of plate tectonics, the theory that explains the shape of Earth's continents and the structure of its sea floors. First introduced in the 1910s, continental drift and related ideas were controversial for years. A mature theory of plate tectonics didn't emerge until the 1950s and 1960s. Only after scientists gathered data showing that sea floors slowly spread out from mid-ocean ridges did they finally start accepting the theory. Most active geophysicists accepted plate tectonics by the late 1960s, though some never did

Voyager 1 is exploring an even more unfamiliar place than our Earth's sea floors -- a place more than 11 billion miles (17 billion kilometers) away from our sun. It has been sending back so much unexpected data that the science team has been grappling with the question of how to explain all the information. None of the handful of models the Voyager team uses as blueprints have accounted for the observations about the transition between our heliosphere and the interstellar medium in detail. The team has known it might take months, or longer, to understand the data fully and draw their conclusions

"No one has been to interstellar space before, and it's like traveling with guidebooks that are incomplete," said Stone. "Still, uncertainty is part of exploration. We wouldn't go exploring if we knew exactly what we'd find

The two Voyager spacecraft were launched in 1977 and, between them, had visited Jupiter, Saturn, Uranus and Neptune by 1989. Voyager 1's plasma instrument, which measures the density, temperature and speed of plasma, stopped working in 1980, right after its last planetary flyby. When Voyager 1 detected the pressure of interstellar space on our heliosphere in 2004, the science team didn't have the instrument that would provide the most direct measurements of plasma. Instead, they focused on the direction of the magnetic field as a proxy for source of the plasma. Since solar plasma carries the magnetic field lines emanating from the sun and interstellar plasma carries interstellar magnetic field lines, the directions of the solar and interstellar magnetic fields were expected to differ

Most models told the Voyager science team to expect an abrupt change in the magnetic field direction as Voyager switched from the solar magnetic field lines inside our solar bubble to those in interstellar space. The models also said to expect the levels of charged particles originating from inside the heliosphere to drop and the levels of galactic cosmic rays, which originate outside the heliosphere, to jump

In May 2012, the number of galactic cosmic rays made its first significant jump, while some of the inside particles made their first significant dip. The pace of change quickened dramatically on July 28, 2012. After five days, the intensities returned to what they had been. This was the first taste of a new region, and at the time Voyager scientists thought the spacecraft might have briefly touched the edge of interstellar space

By Aug. 25, when, as we now know, Voyager 1 entered this new region for good, all the lower-energy particles from inside zipped away. Some inside particles dropped by more than a factor of 1,000 compared to 2004. The levels of galactic cosmic rays jumped to the highest of the entire mission. These would be the expected changes if Voyager 1 had crossed the heliopause, which is the boundary between the heliosphere and interstellar space. However, subsequent analysis of the magnetic field data revealed that even though the magnetic field strength jumped by 60 percent at the boundary, the direction changed less than 2 degrees. This suggested that Voyager 1 had not left the solar magnetic field and had only entered a new region, still inside our solar bubble, that had been depleted of inside particles

Then, in April 2013, scientists got another piece of the puzzle by chance. For the first eight years of exploring the heliosheath, which is the outer layer of the heliosphere, Voyager's plasma wave instrument had heard nothing. But the plasma wave science team, led by Don Gurnett and Bill Kurth at the University of Iowa, Iowa City, had observed bursts of radio waves in 1983 to 1984 and again in 1992 to 1993. They deduced these bursts were produced by the interstellar plasma when a large outburst of solar material would plow into it and cause it to oscillate. It took about 400 days for such solar outbursts to reach interstellar space, leading to an estimated distance of 117 to 177 AU (117 to 177 times the distance from the sun to the Earth) to the heliopause. They knew, though, that they would be able to observe plasma oscillations directly once Voyager 1 was surrounded by interstellar plasma

Then on April 9, 2013, it happened: Voyager 1's plasma wave instrument picked up local plasma oscillations. Scientists think they probably stemmed from a burst of solar activity from a year before, a burst that has become known as the St. Patrick's Day Solar Storms. The oscillations increased in pitch through May 22 and indicated that Voyager was moving into an increasingly dense region of plasma. This plasma had the signatures of interstellar plasma, with a density more than 40 times that observed by Voyager 2 in the heliosheath

Gurnett and Kurth began going through the recent data and found a fainter, lower-frequency set of oscillations from Oct. 23 to Nov. 27, 2012. When they extrapolated back, they deduced that Voyager had first encountered this dense interstellar plasma in August 2012, consistent with the sharp boundaries in the charged particle and magnetic field data on August 25

Stone called three meetings of the Voyager team. They had to decide how to define the boundary between our solar bubble and interstellar space and how to interpret all the data Voyager 1 had been sending back. There was general agreement Voyager 1 was seeing interstellar plasma, based on the results from Gurnett and Kurth, but the sun still had influence. One persisting sign of solar influence, for example, was the detection of outside particles hitting Voyager from some directions more than others. In interstellar space, these particles would be expected to hit Voyager uniformly from all directions

"Now that we had actual measurements of the plasma environment – by way of an unexpected outburst from the sun – we had to reconsider why there was still solar influence on the magnetic field and plasma in interstellar space," Stone said

"The path to interstellar space has been a lot more complicated than we imagined

Stone discussed with the Voyager science group whether they thought Voyager 1 had crossed the heliopause. What should they call the region were Voyager 1 is

"In the end, there was general agreement that Voyager 1 was indeed outside in interstellar space," Stone said. "But that location comes with some disclaimers – we're in a mixed, transitional region of interstellar space. We don't know when we'll reach interstellar space free from the influence of our solar bubble

So, would the team say Voyager 1 has left the solar system? Not exactly – and that's part of the confusion. Since the 1960s, most scientists have defined our solar system as going out to the Oort Cloud, where the comets that swing by our sun on long timescales originate. That area is where the gravity of other stars begins to dominate that of the sun. It will take about 300 years for Voyager 1 to reach the inner edge of the Oort Cloud and possibly about 30,000 years to fly beyond it. Informally, of course, "solar system" typically means the planetary neighborhood around our sun. Because of this ambiguity, the Voyager team has lately favored talking about interstellar space, which is specifically the space between each star's realm of plasma influence

"What we can say is Voyager 1 is bathed in matter from other stars," Stone said. "What we can't say is what exact discoveries await Voyager's continued journey. No one was able to predict all of the details that Voyager 1 has seen. So we expect more surprises

Voyager 1, which is working with a finite power supply, has enough electrical power to keep operating the fields and particles science instruments through at least 2020, which will mark 43 years of continual operation. At that point, mission managers will have to start turning off these instruments one by one to conserve power, with the last one turning off around 2025

Voyager 1 will continue sending engineering data for a few more years after the last science instrument is turned off, but after that it will be sailing on as a silent ambassador. In about 40,000 years, it will be closer to the star AC +79 3888 than our own sun. (AC +79 3888 is traveling toward us faster than we are traveling towards it, so while Alpha Centauri is the next closest star now, it won't be in 40,000 years.) And for the rest of time, Voyager 1 will continue orbiting around the heart of the Milky Way galaxy, with our sun but a tiny point of light among many

The Voyager spacecraft were built and continue to be operated by NASA's Jet Propulsion Laboratory, in Pasadena, Calif. Caltech manages JPL for NASA. The Voyager missions are a part of NASA's Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate at NASA Headquarters in Washington

Jia-Rui Cook 818-354-0850
Jet Propulsion Laboratory, Pasadena, Calif
jccook@jpl.nasa.gov
Ramin
  • Ramin
  • 53.78% (معمولی)
  • بال ایرانسیم شروع کننده موضوع
11 سال پیش
NASA's Voyager 1 Explores Final Frontier of Our 'Solar Bubble


UserPostedImage


PASADENA, Calif. -- Data from Voyager 1, now more than 11 billion miles (18 billion kilometers) from the sun, suggest the spacecraft is closer to becoming the first human-made object to reach interstellar space

Research using Voyager 1 data and published in the journal Science today provides new detail on the last region the spacecraft will cross before it leaves the heliosphere, or the bubble around our sun, and enters interstellar space. Three papers describe how Voyager 1's entry into a region called the magnetic highway resulted in simultaneous observations of the highest rate so far of charged particles from outside heliosphere and the disappearance of charged particles from inside the heliosphere

Scientists have seen two of the three signs of interstellar arrival they expected to see: charged particles disappearing as they zoom out along the solar magnetic field, and cosmic rays from far outside zooming in. Scientists have not yet seen the third sign, an abrupt change in the direction of the magnetic field, which would indicate the presence of the interstellar magnetic field

"This strange, last region before interstellar space is coming into focus, thanks to Voyager 1, humankind's most distant scout," said Ed Stone, Voyager project scientist at the California Institute of Technology in Pasadena. "If you looked at the cosmic ray and energetic particle data in isolation, you might think Voyager had reached interstellar space, but the team feels Voyager 1 has not yet gotten there because we are still within the domain of the sun's magnetic field

Scientists do not know exactly how far Voyager 1 has to go to reach interstellar space. They estimate it could take several more months, or even years, to get there. The heliosphere extends at least 8 billion miles (13 billion kilometers) beyond all the planets in our solar system. It is dominated by the sun's magnetic field and an ionized wind expanding outward from the sun. Outside the heliosphere, interstellar space is filled with matter from other stars and the magnetic field present in the nearby region of the Milky Way

Voyager 1 and its twin spacecraft, Voyager 2, were launched in 1977. They toured Jupiter, Saturn, Uranus and Neptune before embarking on their interstellar mission in 1990. They now aim to leave the heliosphere. Measuring the size of the heliosphere is part of the Voyagers' mission

The Science papers focus on observations made from May to September 2012 by Voyager 1's cosmic ray, low-energy charged particle and magnetometer instruments, with some additional charged particle data obtained through April of this year

Voyager 2 is about 9 billion miles (15 billion kilometers) from the sun and still inside the heliosphere. Voyager 1 was about 11 billion miles (18 billion kilometers) from the sun Aug. 25 when it reached the magnetic highway, also known as the depletion region, and a connection to interstellar space. This region allows charged particles to travel into and out of the heliosphere along a smooth magnetic field line, instead of bouncing around in all directions as if trapped on local roads. For the first time in this region, scientists could detect low-energy cosmic rays that originate from dying stars

"We saw a dramatic and rapid disappearance of the solar-originating particles. They decreased in intensity by more than 1,000 times, as if there was a huge vacuum pump at the entrance ramp onto the magnetic highway," said Stamatios Krimigis, the low-energy charged particle instrument's principal investigator at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. "We have never witnessed such a decrease before, except when Voyager 1 exited the giant magnetosphere of Jupiter, some 34 years ago

Other charged particle behavior observed by Voyager 1 also indicates the spacecraft still is in a region of transition to the interstellar medium. While crossing into the new region, the charged particles originating from the heliosphere that decreased most quickly were those shooting straightest along solar magnetic field lines. Particles moving perpendicular to the magnetic field did not decrease as quickly. However, cosmic rays moving along the field lines in the magnetic highway region were somewhat more populous than those moving perpendicular to the field. In interstellar space, the direction of the moving charged particles is not expected to matter

In the span of about 24 hours, the magnetic field originating from the sun also began piling up, like cars backed up on a freeway exit ramp. But scientists were able to quantify that the magnetic field barely changed direction -- by no more than 2 degrees

A day made such a difference in this region with the magnetic field suddenly doubling and becoming extraordinarily smooth," said Leonard Burlaga, the lead author of one of the papers, and based at NASA's Goddard Space Flight Center in Greenbelt, Md. "But since there was no significant change in the magnetic field direction, we're still observing the field lines originating at the sun

NASA's Jet Propulsion Laboratory, in Pasadena, Calif., built and operates the Voyager spacecraft. California Institute of Technology in Pasadena manages JPL for NASA. The Voyager missions are a part of NASA's Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate at NASA Headquarters in Washington

Jia-Rui C. Cook
818-354-0850
Jet Propulsion Laboratory, Pasadena, Calif
jccook@jpl.nasa.gov

Steve Cole
202-358-0918
NASA Headquarters, Washington
stephen.e.cole@nasa.gov


Ramin
  • Ramin
  • 53.78% (معمولی)
  • بال ایرانسیم شروع کننده موضوع
11 سال پیش
Voyagers in the Heliosheath


UserPostedImage


This artist's concept shows NASA's two Voyager spacecraft exploring a turbulent region of space known as the heliosheath, the outer shell of the bubble of charged particles around our sun. After more than 33 years of travel, the two Voyager spacecraft will soon reach interstellar space, which is the space between stars

Our sun gives off a stream of charged particles that form a bubble around our solar system known as the heliosphere. The solar wind travels at supersonic speeds until it crosses a shockwave called the termination shock. That part of our solar system is shown in dark blue. Voyager 1 crossed the termination shock in December 2004 and Voyager 2 did so in August 2007. Beyond the termination shock is the heliosheath, shown in gray, where the solar wind dramatically slows down and heats up. Outside those two areas is territory dominated by the interstellar wind, which is blowing from the left in this image. As the interstellar wind approaches the heliosphere, a bow shock forms, indicated by the bright arc

The Voyagers were built by NASA's Jet Propulsion Laboratory in Pasadena, Calif., which continues to operate both spacecraft. JPL is a division of the California Institute of Technology in Pasadena. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate

Image credit: NASA/JPL-Caltech
کاربرانی که در حال مشاهده موضوع هستند